When a serious game is commissioned, it is expected that in-game learning should transfer to the work place or a clinical setting, not just lead to improvements in game play.
Evidence of transfer should be a priority in serious game development; there should be evidence that learning acquired in a game is applicable outside of the game.
The Vegas Effect is not unique to games; however, serious games will need to provide evidence that learning that happens in games, does not stay in games.
The tradition of psychometrics may provide methods for data collection and analysis so that serious games may eventually serve as empirically validated diagnostic tools and measures of learning—applicable inside and outside of the game. With tools for measuring training effectiveness from psychometrics, ROI analysis of training solutions and clinical tools can be conducted, and the risk associated with the costs of game development may be diminished.
Serious games and assessment
Serious games are very much like the tools used in psychological assessments and evaluations. Three types of assessments from psychometric methods:
- Formative assessments –a measurement tool used to measure growth and progress in learning and activity and can be used in games to alter subsequent learning experiences in games. Formative assessments represent a tool external to the learning activity, and typically occur in leading up to a summative evaluation.
- Summative assessments provide an evaluation or a final summarization of learning. Summative assessment is characterized as assessment of learning and is contrasted with formative assessment, which is assessment for learning. Summative assessments are also tools external to the learning activity, and typically occur at the end of the learning intervention to evaluate and summarize and is conducted with a tool that is external, not part of the training.
- An informative assessment guides and facilitates learning as part of the assessment. The assessment is the intervention. Successful participation in the learning results in evidence that learning has taken place. The behaviors in the activity have been shown to verify that learning has taken place. No external measures have been added on for assessment.
Games are typically used in the definition of what is an informative assessment. This makes sense, as a game, by its very nature, provides an activity along with assessments, measures, and evaluation. What, why, and how a game measures learning is of primary importance—and this is why serious game designers must learn assessment methods from the field of psychometrics if serious games are to grow as diagnostic tools, assessments, and evaluations.
If a game is to act as an informative assessment, it will stress meaningful, timely, and continuous feedback about learning concepts and process that are accurately depicted. As in an informative assessment, feedback in a game can be a powerful part of the assessment process. As the learner acts in the context of the games rule environment, they may learn the rules and tools through trial and error—eventually developing tactical approaches, and potentially formulate strategies from the possibilities for action deduced from learning from the in-game assessment criteria. This can be powerful.
Evidence supports this powerful learning tool. Research findings from over 4,000 studies indicate that informative assessment has the most significant impact on achievement (Wiliam, 2007). When serious games are built with same care as an informative assessment using methods from psychometrics, serious games can be as effective as an informative assessment.
Currently, most games are not designed as informative assessments. This means that learning in a serious game might suffer from the Vegas Effect. For a game to act as informative assessment, the game must accurately measure the learning the concepts, and the concepts from the game must transfer to other performance contexts—beyond the game. In order to achieve this, the issue of construct validity must be addressed.
For a serious game to have construct validity, the training interventions that they present must have been designed with emphasis on the creation of internal and external validity—what we model, how we measure it, and how it is presented in a game:
- External validity: the ability to generalize in-game learning to other contexts.  To what extent can a training effect from a game be generalized to other populations (population validity), other settings (ecological validity), other treatment variables, and other measurement variables?
- Internal validity: examines whether the adequacy of the study design, or in this case of the game, that the intervention was the only possible cause of a change in the players learning.
To do this, serious game development requires valid concepts for modeling, implementation, and assessment of what is to be learned, as well as how it will be measured outside the game. This is essential for ROI (return on investment) analysis. Serious game development requires research and construct validity to conduct ROI and to avoid the Vegas Effect. Learning that happens in games should not stay in games.
Leaving Las Vegas:
I have come across few if any games that have been designed with the kind of careful attention to research methodology that would be expected when measuring learning, intelligence, personality, or depression. Methods that ensure construct validity are expected in the field of psychometrics and the learning sciences, and may soon emerge as standard practice in serious game design.
Games are often designed to have surface validity. This means that the game APPEARS to measure what it is supposed to measure. Surface level validity is a useful beginning, but should only be considered a step towards having a valid assessment. It should be considered a gamble to build a serious game on surface validity. Designing a serious game on surface validity increases the likelihood of the Vegas Effect.
To reduce the likelihood of the Vegas Effect, a serious game designer could take their game and correlate learning outcomes with validated tools external to the serious game, such as formative and summative assessments. This method of validation is called criterion validity. To do this, the game designer might correlate success in the game with other diagnostic measures with verified content validity. For example, a claim may be made that a game improves working memory. This claim may be validated using the Dual N-Back Test for measures of working memory. The game designer might choose to have a sample of individuals take the Dual N-Back Task, play the game, and then use the Dual N-Back Task after the serious game to measure changes in working memory using the Dual N-Back Task as criterion for measuring changes in working memory.
Criterion validity is a powerful way to claim effectiveness, and reduce the likelihood of a Vegas Effect. However, the research design is essential in using criterion validity. One cannot simply have someone play their serious game and then attribute changes in the Dual N-Back score by correlation with having played the serious game . . . correlation does not imply causation. To validate the serious game with improvements in working memory on the Dual N-Back Task, the serious game developer should recruit methods from psychometrics such as a Repeated Measures Design, with attention to Sampling.
To really avoid the Vegas Effect, the serious game developer should adopt the gold standard: Construct Validity. Meaning that the learning designed into the game is measured with the same rigor as the diagnostic tools in psychometrics. Through designing games with construct validity, the game scenarios can be shown to be definitively delivering and measuring the theoretical construct. Although this is the gold standard, it requires significant investment in time and money to develop. There are however, some methods from psychometrics that can be adopted in the design process of a serious game to reduce the probability of the Vegas Effect.
One methodological step that can be taken towards construct validity is to conduct a study of inter rater agreement on the game elements that deliver instruction. The inter-rater reliability method can be used to identify and score of how much agreement there is on whether the game content is what we say it is. One way to do this is to individually present the game content to a number of sequestered subject matter experts and ask them to judge. For example, we might present judges with number of scenarios from a game about Decision Making Stages based upon B. Aubrey Fisher’s four stages of group decision making (Fisher, 1970). To do this, the game developer might present the game scenarios to an expert on this topic and ask them to judge, whether the scenario is an example of Fisher’s Orientation Stage in Group Decision Making? Here is the definition:
Orientation stage- this phase is where members meet for the first time and start to get to know each other.
When the expert judges the scenarios, the responses from all the judges can be gathered and inter-rater reliability can be calculated from the responses using Cohen’s Kappa. If the percentage of agreement is low, either the scale (game scenario) is defective or the raters need to be re-trained. If agreement is high, the game scenario is a step closer to construct validity.
Inter-rater agreement is a simple, low-cost method for increasing assessment and content validity. This is an example of how traditional research methods from psychometrics can be integrated as part of the design process from the beginning. As suggested here, an early step in the design process is to conduct tests of inter-rater agreement.
This is an excerpt from:
Dubbels, B.R. (in preparation) The Importance of Construct Validity in Designing Serious Games for Return on Investment.
Works cited:
Fisher, B. A. (1970). Decision emergence: Phases in group decision making. Speech Monographs, 37, 53-66.
www.ampainsoc.org
For immediate release Contact:Â Chuck Weber
(847) 705-1802, cpweber@weberpr.com
News from American Pain Society’s 29th Annual Scientific Conference
Video Games and Virtual Reality Experiences Prove Helpful as Pain Relievers in Children and Adults
BALTIMORE, MD, May 6, 2010 – When children and adults with acute and chronic pain become immersed in video game action, they receive some analgesic benefit, and pain researchers presenting at the American Pain Society’s (www.ampainsoc.org) annual scientific meeting here today reported that virtual reality is proving to be effective in reducing anxiety and acute pain caused by painful medical procedures and could be useful for treating chronic pain.
“Virtual reality produces a modulating effect that is endogenous, so the analgesic influence is not simply a result of distraction but may also impact how the brain responds to painful stimuli,†said Jeffrey I. Gold, Ph.D., associate professor of anesthesiology and pediatrics, Keck School of Medicine, University of Southern California and director of the Pediatric Pain Management Clinic at Children’s Hospital of Los Angeles. “The focus is drawn to the game not the pain or the medical procedure, while the virtual reality experience engages visual and other senses.â€
While moderating a symposium entitled “Virtual Reality and Pain Management,†Dr. Gold noted that the exact mechanistic/neurobiological basis responsible for the VR analgesic effect of video games is unknown, but a likely explanation is the immersive, attention-grabbing, multi-sensory and gaming nature of VR. These aspects of VR may produce an endogenous modulatory effect, which involves a network of higher cortical (e.g., anterior cingulate cortex) and subcortical (e.g., the amygdale, hypothalamus) regions known to be associated with attention, distraction and emotion. Studies measuring the benefit of virtual reality pain management, therefore, have employed experimental pain stimuli, such as thermal pain and cold pressure tests, to turn pain responses on and off as subjects participate in virtual reality experiences.
“In my current NIH-funded study, I am using functional magnetic resonance imaging (fMRI) to measure the effects of VR on experimental pain,†Dr. Gold explained. “The objective is to measure the cortical regions of interest involved in VR, while exposing the participant to video racing games with and without experimental pain stimuli.â€
Lynnda M. Dahlquist, Ph.D., a clinical child psychologist and professor of psychology at the University of Maryland, Baltimore County, reviewed her most recent laboratory research studies
examining the use of virtual reality and other computer/videogame technologies to provide distraction-based acute pain management.
The use of video games and virtual reality distraction (VRD) technology for procedural pain management in both pre-schoolers and elementary to middle school children, reported Dr. Dahlquist, yielded promising results in increasing pain tolerance “with potentially significant future clinical applications for more effective pain reduction techniques for youth with chronic and acute pain. However, more research is needed to know for certain if there is real world VRD application in such pain-generating procedures as cleansing wounds, cancer treatment, immunization, injections and burn care.â€
Children interacting with a virtual environment by watching video games demonstrated a small pain tolerance improvement during exposure to ice cold water stimulation, according to Dr. Dahlquist, but she recorded significantly greater pain tolerance for kids wearing specially-equipped video helmets when they actually interacted with the virtual environment.
“Our aim is to know what about VRD makes it effective in pain tolerance lab studies with children and what are the best ways to use it for optimum results,†explained Dr. Dahlquist, noting that any distraction is better than none at all in pain minimization. “Is it just the amazing graphics in the video games or is it because youngsters are truly more distracted through their direct interaction with the virtual environment?â€
VRD’s impact on pain tolerance levels varied by children’s ages, indicating that age may influence how effective video game interaction will be. “We must better understand at what ages VRD provides the greatest benefit in moderating acute pain and at what age, if any, that it can be too much or be limiting.â€
In one study using video helmets for virtual environment interactivity, the special equipment had little positive impact with children ages six to ten, but for those over ten years of age, “there was a much longer tolerance of the pain of the cold water exposure, leading us to further study to determine what aspect or aspects of cognitive development and neurological function account for this difference among youth.
“Having dealt clinically for more than 15 years with children with acute and chronic illness,†Dr. Dahlquist summed up, “my genuine hope is that virtual reality activity can alleviate the anxiety of approaching pain and the pain experience itself.â€
About the American Pain Society
Based in Glenview, Ill., the American Pain Society (APS) is a multidisciplinary community that brings together a diverse group of scientists, clinicians and other professionals to increase the knowledge of pain and transform public policy and clinical practice to reduce pain-related suffering. APS was founded in 1978 with 510 charter members. From the outset, the group was conceived as a multidisciplinary organization. APS has enjoyed solid growth since its early days and today has approximately 3,200 members. The Board of Directors includes physicians, nurses, psychologists, basic scientists, pharmacists, policy analysts and more.
# # #
Technology and Literacy
Current and Emerging Practices with Student 2.0 and Beyond
David G. O’Brien Brock Dubbels
Guiding Questions
- What technology tools and Web 2.0 applications are important for literacy learning
- What are the best practices involving technology and literacies
- How can instruction in the classroom and curriculum be enhanced by using new and evolving technologies that support digital literacy practices?
This chapter provides an overview of evolving research and theoretical frameworks on technologies and literacy, particularly digital technologies, with implications for adolescents’ literacy engagement. We suggest future directions for engaging students with technology and provide resources that support sound practices.
Evolving Research on Digital Technologies:
From Frameworks to Best Practice
When Kamil, Intrator, and Kim (2000) tackled a synthesis of research on technologies and literacy, they termed the task a conundrum. Given the rapidly evolving landscape of various technologies, that review, now dated (as this chapter soon will be), is still insightful both in reviewing a diversity of topics and the evolving importance of each. For example, at the turn of the decade, these researchers gave us historical footing in matters such as how computers and software may be used to improve reading and writing (Kamil, 1982), and to motivate learners (Hague & Mason, 1986). They noted the rising significance of hypertext and hypermedia, and foreshadowed the explosion of interest in the intersection of traditional literacies and digital media, which, at the turn of the decade, comprised a new program of inquiry (Reinking, McKenna, Labbo, & Kieffer, 1998). Finally, they also highlighted the social and collaborative importance of students working on stand-alone computers or in collaborative network environments, cited the paucity of research overall
on technologies and literacy, and expressed optimism about the future of computers as instructional tools.
In the same volume that featured the synthesis by as Kamil, Intrator, and Kim, Leu (2000) used the phrase “literacy as technological deixis†(p. 745) to refer to the constantly changing nature of literacy due to rapidly morphing technologies. Leu’s characterization is crucial, because he posits that these literacies are moving targets, evolving too rapidly to be adequately studied. If best practices rest on a solid research foundation, then, in the case of technologies and literacy we haven’t even begun to know what best practices are. Nevertheless, even in the midst of a shallow bed of “empirical†studies—that is, studies of specific effects, over time, with statistical power, or studies of carefully described and documented, contextualized practices—compelling frameworks have emerged, with implications for how technologies enable new literacy practices. Best practices, if based on solid frameworks rather than a carefully focused research program, can be extrapolated from the frameworks and be the basis for sound instruction and curriculum planning. In this chapter we bridge some of these frameworks with instructional practice.
The relatively brief evolution of technologies and literacy has led us from computers and software as self-contained instructional platforms to a networked virtual world that computers enable. In the past 10 years or so, we have moved from viewing the Web as primarily a source of information and as a sort of dynamic hypertext with increasingly sophisticated search engines, to Web 2.0. Albeit a fuzzy term that has accrued definitions ranging from simply a new attitude about the old Web to a host of perspectives about a completely new Web, Web 2.0 presents exciting possibilities for enhancing instruction and learning. This new Web is an open environment with virtual applications; it is more dependent on people than on hardware; it more participatory than a one-sided flow of information (e.g., blogging, wikis, social networks); it is more responsive to our needs (e.g., mapping a route to a previously unknown destination). Perhaps most important, Web 2.0 is more open to sharing of ideas, media, and even computer code (Miller, 2005). The presence of Web 2.0 is about the World Wide Web (WWW) as a platform for production. Software that users would normally purchase and install from a disk or download is now hosted on the Internet. In a sense, Web 2.0 affords anyone access to the largest stage yet conceived. Educationally, it has the potential to diminish the broadcast mode of information transmission that has reduced individual interests and engagement. Instead, learners can now have at their disposal studio-quality tools that enhance production, appreciation, recognition, and performance, and above all, provide access to a worldwide audience.
Whereas research on computers and reading and writing has remained sparse, research on the myriad literacy practices involved in the Web 2.0 phenomenon is sparse but growing rapidly and is informed by many theoretical frames and fields, most of which overlap—for example, multiliteracies (Cope & Kalantzis, 2000; New London Group, 1996), new literacies and new literacy studies (Coiro, Knobel, Lankshear, & Leu, 2008; Kist, 2005; Knobel & Lankshear, 2007), media studies and new media studies (Hobbs, 2007; Kress, 2003), and critical media literacy and popular culture (Alvermann, Moon, & Hagood, 1999; Beach & O’Brien, 2008), to name a few.
Each of these frameworks has its own dynamics for describing and studying literacy practices, and each is inextricably intertwined with other frameworks. In the rapidly emerging research base, most of the designs are highly contextualized and theoretically tantalizing, but few studies are gauged to identify specific generalizable practices. For example, the studies designed around some of the aforementioned frameworks vary in terms of methodology (spanning the full range of human and cognitive sciences); they vary in terms of which data are collected, which settings (physical and virtual) are studied, and how learners are defined (e.g., as information processors, real selves, virtual selves, identity constructors). Hence, we can present here only a small sampling and complement the descriptions with some “best practice†exemplars, reminding readers of the caveat that “research-based†practices represent glimpses or snapshots taken along the rapidly moving field.
Reader and Writer 2.0: New Literates and New Literacies
What is important about technologies and literacies, especially when considering adolescents? What should we cull from the myriad evolving frameworks and perspectives to be able to present something useful for teachers and learners at this point in time given this rapidly changing texture. First, we want to present the adolescent learner, the person we call Student 2.0, starting with a vignette.
High school students in Eden Prairie, Minnesota, a suburb of Minneapolis,posted photos on Facebook revealing themselves partying with alcohol, in violation of school rules. Following an investigation by school officials, disciplinary action was taken against 13 students. Students who believed that that the administration went too far walked out of school in protest; some of the parents threatened legal action (Xiong & Relerford, 2008). Scholars of digitally mediated popular culture challenged theadults, parents and school officials alike, to evaluate more critically what had happened: High school students felt a compelling need to express themselves as digital authors and document a relatively common practice, partying with alcohol. And issuing sanctions assumes that the practice had not been widespread before it was expressed publicly on Facebook. Prosecution of the rule offenders would only serve to remind the documentors to be more careful. The new media scholars also reminded the youth as authors to consider more carefully their audience in the future. When you post on Facebook, you create for everyone, including school administrators and parents. Some students who were interviewed on television reacted to the disciplinary measures by saying that their rights to free speech were violated, that the school administrators had no jurisdiction, because the activities happened off of school grounds. Others went back to Facebook to start a new group page to defend their actions.The Eden Prairie incident, albeit intriguing as a local interest piece about controversial legal and ethical issues regarding the Web 2.0, illustrates the trend of online content creation among youth. Rather than just use the Web to locate information, students are involved in content creation, that continues to grow, with 64% of online “teenagers†ages 12 to 17 engaging in at least one type of content creation, up from 57% of online teens in 2004 (Lenhart, Madden, Macgill, & Smith, 2007). In this national survey by the Pew Internet and American Life Project, 55% of online teens ages 12–17 say that they have
created a profile on a social networking site, such as Facebook or MySpace, and 47% of online teens claim to have uploaded photos where others can see them. Even though those students posting online photos sometimes restrict access, they expect feedback. Nearly 9 out of 10 teens who post photos online (89%) say that people comment on their postings at least some of the time. The number of teen bloggers nearly doubled from 2004 to 2006, with girls leading boys in blogging, and the younger, upcoming girls more likely to outblog The important issue for teachers is that these student authors are composing in a visual mode and reading comments printed in response; their peer readers (who are also most likely composers) are increasingly “reading†images and composing text responses or print messages in blogs and expecting critical responses. In short, students increasingly seem to engage in the
types of reading and writing they either don’t engage in, or don’t prefer, at school.
Experienced teachers can remember when stand-alone computers were going to revolutionize education; they can recall when the Internet was a cumbersome, text-based environment rather than an engaging graphical environment called the WWW. Those of us who, as literacy educators, have spent our careers studying how young people interact with printed texts are now faced with a new landscape that renders many of our theoretical models, instructional frameworks, and “best†practices based on these print models inadequate or even obsolete. Print text remains important but, as noted, expression is increasingly multimodal (Kress & Van Leeuwen, 2001). Reading and writing youth are increasingly likely to express ideas using different semiotic modes, including print, visual, and audio modes, and to create hybrid texts that defy typical associations between modes and what they traditionally represent.

When David worked with struggling readers in a high school Literacy Lab, the students, many of whom did not choose to read and write using print, wrote complex multimodal texts on a range of topics. They were very articulate about the affordances of various modes, and how those affordances influenced their choices in composition. For example, one group of students working a project exploring the impact of violence in the medion in adolescents, decided when to use images instead of print to communicate their ideas more effectively and passionately. They carefully planned how to juxtapose images and print to convey meaning. What would traditionally have been termed a “report†was instead a mul- timedia project, which they presented to parents and others at the school Open House evening. Brock has created a game studies unit, in which students study the qualities of their video games and create a technical document called a Walk- through using blogs, a wiki, video, and an animated slide show embedded into the blog. Students could read, compare, and evaluate other students’ work. Brock used an RSS feed (really simple syndication, a feed link to syndicated content) and had the blogs collected with bloglines, a way to both aggregate the student work and provide social networking through the WWW-based platforms and the comment sections for students.From these two examples, you can see that the reading and composition enabled by these digital technologies is spatial rather than linear. Linearity has been replaced by reading and writing in virtual textual space—where a hot link lures the reader away from one page and on to the next, and from print to images and video, deeper and deeper into one’s unique textual experience, and writers can post, broadcast, and receive responses. Scholars are already starting to look at the new spatial and temporal dimensions of digital literacies, as well as the compatibilities and incompatibilities of these dimensions
with traditional spatial and temporal dimensions of schools (Leander, 2007). Researchers are also studying new literacy environments such as web pages using research paradigms derived from reading print on paper—for example, Coiro and Dobler’s (2007) work extending traditional comprehension theories to study online reading comprehension. Coiro and Dobler argue that although we know a lot about the reading strategies that skilled readers use to understand print in linear formats, we know little about the proficiencies needed to comprehend text in “electronic†environments. McEneaney (2006) cogently argues that the traditional theoretical frameworks, including so-called “interactive theories†(from cognitive or transactional perspectives) are too strongly based in a traditional notion of print to be useful. With what are the new literates interacting? McEneaney contends that the text can “act on†the environment: The text can create the reader, just as the reader through the dynamics of online environments, can create or change the text.
But the new literates also encounter new challenges. The new textual spatiality lacks the kinesthetic texture of books; readers lose their “places†and even the ability to feel the touch of the page as they do when they flip paper pages back, then reorient themselves on the page (Evans & Po, 2007). The feel of the text is replaced by the feel of a finger on a mouse or a key. The imaging that helps a reader maintain and access the previous page might be replaced by multiple mental images of more rapidly changing texts, or mental images replaced by actual images. What Evans and Po call the fluidity of the digital or electronic texts invites readers to alter the text more readily, more easily. We come full circle with a tension faced by readers of the digital texts. On the one hand, this text fluidity begs readers to alter texts, to pick alternative texts, and to mix and match texts; on the other hand, this new textuality, with texts unfolding at every mouse click, places the text itself more in the control of the reader. The text the reader creates, often unwittingly via a series of clicks or cuts and pastes, may address the reader/writer in unexpected ways. One of the most exciting prospects for educators is the unlimited range of texts, from traditional print modes to various hybrids, including print texts, visual texts, audio texts, and even various types of performance texts that students can now create, as they themselves are “created†or changed by those texts. The new literates can navigate through a collage of print, images, videos, and sounds, choosing and juxtaposing modalities, and bending old spatial and temporal constraints to communicate to peers and to others throughout the world.
Beach and O’Brien (2008), in drawing from both the philosophy of mind and neuroscience (e.g., Clark, 2003; Restak, 2003) propose that the students of the “digital generation†have more digitally adept brains; they read and write differently than youth from even 10 years ago, because their existence
in the mediasphere, the barrage of multimodal information they encounter daily, the constant availability of multiple tech tools at their fingertips, and the convergence enabling immediate use and production of media have changed the way they process multimedially. Prensky (2001) has posited a similar scenario. The Beach and O’Brien proposal (2008), in response to a Kaiser Family Foundation study (Foehr, 2006) of young people ages 8–18 and widely disseminated in the popular press, shows that even though the total amount of time devoted to media use remains about the same as 5 years ago (6.5
hours a day), the amount of time devoted to multitasking, using multiple forms of media concurrently (e.g., surfing the Web while listening to an MPEG-1 Audio Layer 3 (MP3) and checking text messages), is on the rise. Beach and O’Brien (2008) contend that multitasking is not accurate, because it implies the ability to engage in several activities at the same time or, more accurately,to switch attention rapidly among activities to gain efficiency in completing work. They instead characterized this often seamless juggling as multimediating (Lankshear & Knobel, 2003), because it more accurately involves not only multimodal attention shifts but also seems to include a new facility and flexibility in processing and producing multimodal texts. The missing piece in characterizing the new literates is that we continue to appraise them using outdated models of reading, text processing, and learning. Instead, we need
to think of them as more adept at using technologies to read, compose, and “socialize.â€
Texts 2.0: From the Page to the Screen
Let us revisit the question posed in the last section—What is important about technologies and literacies?—and this time consider the evolving kinds of texts that youth are reading and writing. Again, we have to choose among compelling frameworks and perspectives. One salient issue surrounding the
evolving technologies is how the notion of “text†is changing. We are “moving from the page to the screen†(Kress, 2003). Kress notes that the screen privileges images. He also makes a case for the ambiguity of images and the necessity of print text for helping the viewer understand context and make a
directed interpretation of images. As educators, we have to concede that texts are increasingly multimodal (Jewitt & Kress, 2003). In multimodal reading and composing, ideas and concepts are represented with print texts, visual texts (photographs, video, animations), audio texts (music, audio narration, sound effects), and even dramatic or other artistic performances (drama, dance, spoken-word) (O’Brien & Scharber, 2008).
A second change is the increasing popularity of hybrid texts that are unlike most of the longer, connected discourse with which many of us grew up. For example, textoids are on the rise. These texts were originally defined as specially created research texts that lacked the coherence and structure of naturally occurring texts from typical genres (Graesser, Millis, & Zwaan, 1997) or contrived instructional texts (Pearson, 2004). Ironically, these once- contrived texts are ubiquitous in online environments. The term textoids now refers to fleeting texts that are transported from one place to another and are constantly changing (e.g., Wikipedia entries, pasted into a student’s report and edited to fit into the new textual context); they are also textual bursts of information sent to cell phones as text messages. Short textoids or text bursts are displacing longer discourse as readers expect more choices in accessing information and entertainment faster in quick clicks. At the same time, the sheer number and range of genres of these textoids, the juxtaposition of textoids with other media, and the retention of the more traditional, longer discourse, makes reading in online text environments more challenging than reading in traditional print environments.
The typical ways of describing and distinguishing texts from one another, such as using text structure, no longer apply (McEneaney, 2006). Electronic texts defy such classification, because they may be short and contrived to produce a targeted burst to get attention (the textoids); they are not linear but
spatial (hypertexts, hypermedia). Single textoids or pages or articles are linear, but they exist in virtual space, with a multitude of other possible texts. In short, the texts have virtual structure that is much more dynamic than static structures assigned to single print texts.
Present Technology Tools and Web 2.0 Applications
As we noted, Web 2.0 tools are about production, and they are hosted on the Web to enable a range of activities. As the access to bandwidth increases, and computers are equipped with greater image/video processing capacity, these tools will become invaluable in engaging youth. Young people will use these tools not only to develop literacy and numeracy skills but also to continue to hone their technological skills in the production, communication networking, data mining, and problem solving that are increasingly valued in the global economy. In the past, many of the tools now available as Web-based tools were expensive, limited to single machines, and difficult to use. These same tools, such as word processing, multimedia production, and network communications tools are now free, shareable, collaborative, and perceived as both meaningful and enjoyable by young people. Moreover, the tools are
part of young people’s daily lives. In addition, the personal electronics that many young people carry in their pockets, backpacks, and purses are more powerful than the computers that inhabited labs not even 5 years ago. With the advent of new applications and relatively cheap storage on the Web, these portable devices neither perform the bulk of processing nor store the outputs of processing; they are access devices—Web portals, with small screens and keyboards or other ways to input data. For example if you want to work with pictures, you can access a portal such as Flickr to view and manage pictures; if you want to create a document of just about any stripe, you can go to Google Docs and make slide shows; engage in word processing; construct spreadsheets; and store, share, and collaborate with writing partners.
Teachers can use many of these tools to extend and to enhance the learning experience of their students. The tools present challenges in developing best practices because they are neither repositories of content nor self- contained curricula. Rather, they can be used by creative teachers who are
able to draw from existing content domains, themes, and conceptual frameworks as they work within the applications; the tools can provide supportive environments for producing content, sharing and collaborating around content, and hosting public displays of users’ productions. Hence, the tools are not useful without the context of a larger unit or lesson plan, and instructional and learning frameworks that support activities and literate practices enabled by the tools. Teachers must understand clearly their instructional and learning objectives and goals, and students must know how the tools can help them meet those goals. Otherwise, the tools, which students sometimesknow well and can use for entertainment, revert to users’ tools for pleasure and interests, easily circumventing instructional or learning practices desired by teachers. Next, we review some Web 2.0 tools that enable these practices, and describe the features of each, presenting examples of how we have used them with students.
MySpace
We start with the nemesis of most computer classrooms and labs. For example, Brock was observing another teacher’s students during a drafting class. The students were working in a lab with high-end three-dimensional drafting software. During downtime between instructions that were broadcast over the
public address system, students often checked their MySpace pages. Although the site was blocked in the district, many students easily overcame the obstacle by searching for a proxy server that granted them access. A proxy server is a website that has a name accepted by the firewall, so it is allowed—it is kind of like using a fake ID. Although students may not know how it works, they have learned how to do it. And no matter how savvy the information technology (IT) department, the almost infinite supply of new proxy servers and webpages, with directions targeting youth who want to jump the school restrictions, makes sites deemed objectionable by school districts difficult to block.
On the one hand, to the digital immigrants and the inhabitants of the Institution of Old Learning (O’Brien & Bauer, 2005), MySpace represents an uncontrolled virtual space that distracts students from work and enables socializing and forms of expression incompatible with the organization and temporal control of school. On the other hand, for digital natives, “assimilated†digital immigrants, and new literacies advocates, MySpace is a dynamic forum of multimodal expression. It is also a place where young people socialize with peers around the world, put pictures up, write in slang, stream music and video, and engage in instant messaging. They are able to blog, to embed flash animations—in short, to engage in almost limitless expression using a range of multimodal literacies. It is really an example of students expressing themselves in the same way they dress, decorate their rooms, or draw in their notebooks.
This does not mean that the space is benign. Although you can connect with friends and family, you can also get solicitations from unwanted characters. Most young people are aware of whom to talk to, and how they expect others to speak to them. Users know that others mask their true identities through the computer, which has led young people to be more savvy as well. The Kaiser Family Foundation Generation M report (Roberts, Rideout, & Foehr, 2005) notes that when kids come across inappropriate sites and solicitations, they move past them. For digital natives, experienced in social networking, these are just another distraction in the way of what they went to the site to do. MySpace sites can also be locked to persons other than those invited by the owner.
We don’t expect sites like MySpace to be imported into the school curriculum. However, in the spirit of being more assimilated into Generation M’s world, it makes sense for teachers to join MySpace, set up a page, and even let students know that you have done so. As teachers, we interact regularly with our students via MySpace. Through it, we are more in tune with their social worlds, their interests, and their creativity. You might also want to bridge media production in school with the sharing features of such social networking sites, so that students may use tools like MySpace as a way to share and to get feedback on their productions.
You already know a bit about Facebook from the Eden Prairie vignette. It is a place where you can post your profile and surround yourself with friends, their activities (including photos of parties!) and favorite sites, and connect the dots to all of your websites. Brock has links to SlideShare, mogulus television station, Facebook social networking groups, and various blogs. Facebook also includes tons of little games, multiple ways you can communicate with others, and things you can share. Brock is a member of many groups, and when the mood catches him, he starts another group: How about people who have read this chapter and want to continue the discussion about literacies involved in applications for Student 2.0? It really is that easy, and he really did start that group.
In Facebook you can choose to keep up with friends you don’t see often, as well as friends and acquaintances with similar interests and affinities. You can take surveys of movies and compare them to your friends; you can see what kind of German or French philosopher you are. You can share music,
keep up to date with friends through instant messaging, and be alerted to activities of groups to which you belong. Facebook, like MySpace, is blocked in many school districts, although most of adolescents we know seem to prefer MySpace. As with MySpace, we encourage teachers to set up a Facebook account to see what it provides. Although it might be tricky if the site is officially blocked in school, we also encourage teachers to use it to network with both colleagues and students. One of the great revelations, if you are included as a “friend†to students classified as “struggling†in reading and writing, is the quality, the range of genres, and the passion with which these students compose and engage in reading others’ compositions on social networking sites. It is possible that these same students, who have negative perceptions about their abilities and avoid reading and writing in school, might invite teachers to read what they have written online.
YouTube
Unfortunately, YouTube is much maligned in schools, not just because of the content, but also because streaming media consume bandwidth. This is the most complete compendium of online searchable video ever. Like any compendium, including the billions of webpages outer there, there are some videos
that teachers may find either objectionable or a waste of time, just as there are thousands of interesting and informative videos. There are really many opportunities for using Web-based video in the classroom. Here are several ways that we have used it:
1. To show a video.
2. To host a video we have produced.
3. To engage in social networking.
4. To enhance engagement among students.
5. To provide content for a Web-based, TV-like network with Mogulus. Â Â (now Livestream)
The real value of video is its impact due to availability of narrative, and the power of performing and presenting to the world—something that local and even national networks cannot do. YouTube not only hosts videos created by your students but also provides access to videos created by novices and professionals from all over the world. YouTube should be a part of classroom instruction designed to teach appropriate use of media and media savvy to young people. With YouTube you can embed video in your blog and your website, as well as upload your own creations—even from your cellular phone. We have observed that when students create for performance and presentation to an audience other than their teachers and immediate peers, they put forth much more effort and are much more creative and engaged, and the learning experience lasts long after the week-and-a-half extinction point of most test- driven curricula. Students can create, post, and share. In addition, teachers can create groups and utilize social networking to perform and to respond. The most powerful benefit is that this social networking and broadcasting function extends and deepens the possibility of participating in high-traffic media networks, where millions of people may view your work and send out links to invite their friends to see what you have done. With the right topic and a bit of luck, a cell phone with video capture and a good idea can start a person’s career in video media. This prospect can be motivating, and the idea that students have done something that everyone can see leads them to some real street “media cred.â€
Flickr
This photo sharing website, web services suite, and online community platform was one of the earliest Web 2.0 applications. In addition to being a popular website for sharing personal photographs, the service is widely used by bloggers as a photo repository. Flickr’s popularity has been fueled by its innovative online community tools that allow photos to be tagged and browsed by folksonomic means, a social/collaborative way to create and manage tags for content, in contrast to traditional subject indexing, in which content is fit to subjects predetermined by experts (Vander Wal, 2007). In Flickr, metadata are generated by not only experts but also creators and consumers of the content. Folksonomies became popular on the Web around 2004, with social software applications such as social bookmarking or annotating photographs. Typically, folksonomies are Internet-based, although they are also used in other contexts. Folksonomic tagging is intended to make a body of information increasingly easy to search, discover, and navigate over time.
As folksonomies develop in Internet-mediated social environments, users can discover who created a given folksonomy tag, and see the other tags that this person created. In this way, a folksonomy user may discover the tag sets of another user who similarly interprets and tags content. The result is often an immediate and rewarding gain in the user’s capacity to find related content (a practice known as pivot browsing). Part of the appeal of folksonomy is its inherent subversiveness: Compared to the choice of the search tools that websites provide, folksonomies can be seen as a rejection of the search engine status quo in favor of tools that are created by the community. Obviously, in addition to being a place to share photos, Flickr is a great source of media form students’ multimedia productions.
Blogger
Brock has used this one, putting his class blog (www.5th-teacher. blogspot.com) up on the screen, with images, examples, links to other resources, related news events, goings on in the class, his teaching manifesto, and global descriptions of assignments, as well as breakdowns of daily work. He also embeds his slide shows in the blog, along with video. This provides a resource for students to use both in class and outside of class. Because students have learned the format, and how to use pictures and other media from the Web, they have become proficient at creating reflective work and high-quality
multimedia productions. Blogger gets a bad rap by some, but you can limit the audience of student blogs by closing them off from the world feature and selecting viewers by inviting specific people. This also allows the teacher to access the blog if there is questionable content for classroom blogs “gone rogue.â€
SlideShare
This Web application is great for getting students to see the opportunities of creating active multimedia products. Brock’s students created slide shows in PowerPoint, using images, text, and animation and transition effects, then uploaded them to SlideShare. This allowed the class to create their own group (Washburn Introduction to Engineering Design [IED]) where they could see and comment on each others’ slides, as well as use the chat function. Students also use SlideCast, in which they enter and synchronize an MP3 with their presentation, so that both teachers and students can create music videos or even do voice-over narration for telling stories and performance (dramatic) readings. SlideShare also lets you one-click to Blogger, so that students may embed their slide show in their blog. A cool feature is the ability to link this into Facebook.
Google Suite
Google provides a nice suite of tools for educators and students. Often your students have computers with Internet access at home but lack productivity software, such as Microsoft Office, or free tools such as OpenOffice. Students can use the Google Suite to create word processing, slide shows, and spreadsheets. The impressive feature is that this suite is available online, so students with an Internet connection can work at home on the document they created at school. And as with other Web 2.0 applications, students may invite others to cowrite and produce documents here. This allows groups to work on the same paper, and it also tracks each person’s contributions as the document is created. We used Google Documents to collaborate on this chapter. In addition, Google Maps, Google Earth, and Google SketchUp, a three-dimensional modeling program, are other tools in the Google suite that deserve extra emphasis. Reading and writing practices are more engaging to students when tied to the creation of the places, people, and activities. Brock had students create scenes from the play A Raisin in the Sun using this tool. The class explored the role of place and lived space, and the way space influences how people feel, speak, and act. This high-tech diorama was reminiscent of the shoebox versions we sometimes made for fun or for school projects.
Zotero
Zotero, an easy-to-use yet powerful research tool, helps researchers gather, organize, and analyze sources (citations, full texts, webpages, images, andother objects), and share research results in a variety of ways. An extension of the popular open-source Web browser Firefox, Zotero includes the best parts
of older reference manager software (like EndNote)—the ability to store author, title, and publication fields, and to export that information as formatted references—and the best parts of modern software and Web applications (like iTunes and del.icio.us), such as the ability to interact, tag, and search in advanced ways. Zotero integrates tightly with online resources; it can sense when users are viewing a book, article, or other object on the Web, and—on many major research and library sites—find and automatically save the full reference information for the item in the correct fields. Since it lives in the
Web browser, it can effortlessly transmit information to, and receive information from, other Web services and applications; because it runs on one’s personal computer, it can also communicate with software running there (e.g., Microsoft Word). It can also be used offline (e.g., on a plane, in an archive without Wi-Fi).
Scribd
This document-sharing community and self-publishing platform enables anyone to publish easily, distribute, share, and discover documents of all kinds. You can submit, search for, and comment on e-books, presentations, essays, academic papers, newsletters, photo albums, school work, and sheet music. A powerful feature of this tool is that you can upload documents in many different formats, including Microsoft Word, Adobe Portable Document Format (PDF), plain text, hypertext markup language (HTML), PowerPoint, Excel, OpenOffice, Joint Photographic Experts Group (JPEG), and many other formats. Once your documents are uploaded, you can embed them in a blog, Facebook profile, or other external websites, with your fonts, images, and formatting fully intact. Each document hosted at Scribd has its own unique uniform resource locator (URL), and you have unlimited storage, so you can
upload as many documents as you like. Once these are up, they are also available for fast indexing by Google and other major search engines, so that your content can be found in simple searches. You can keep certain documents private or share with a limited number of friends, and you can automatically convert published content into PDF, Word, and plain text. What is engaging for young writers is that not only can they publish widely but they also can see how many people have viewed their documents by location. Through Google you find documents similar to your own, as well as connect with a community of writers working in the same content area, enabling feedback and dialogue about your documents yet allowing you to retain full copyright under Creative Commons licenses.
Other Web 2.0 Resources
Space limits preclude a more elaborate listing of the multitude of other Web 2.0 sites. We recommend that readers of this chapter peruse the following briefly annotated list of other sites promoting multimodal literacies:
• Digg. A community-based, popular news article website, where news stories and websites are submitted by users, then promoted to the front page through a user-based ranking system.
• bubbl.us. An online brainstorming tool that students and teachers can use to create colorful mind maps online, share maps and collaborate with friends, embed mind maps in blogs or websites, e-mail and print maps, and save maps as images.
• BigHugeLabs.com. A tool that makes using Flickr a lot more interesting by capitalizing on the site’s existing functionality. Dozens of toys, games, and utilities allow you, for example, to create a magazine cover from a selected Flickr photo, create a motivational poster, and access huge amounts of user    data (FlickrDNA).
• Photoshop Express. An application providing two gigabytes of storage to which you can link in your blogs or websites. You can edit images on the fly without having to up/download them each time or move from computer to computer, and you are just a login away from your library of photos.
• SoundJunction. A site where users can take music apart and find out how it works, create music, find out how other people make and perform music, learn about musical instruments, and look at the backgrounds of different musical styles.
• del.icio.us. (pronounced like the word delicious). A social bookmarking Web service for storing and sharing data with more than 3 million users and 100 million bookmarked URLs.
• Ning. A site that enables the creation of one’s own social network, designed to compete with sites like MySpace and Facebook, by appealing to users who want to create networks around specific interests, or who have limited technical skills.
• VoiceThread. A versatile online media album that can hold essentially any type of media (images, documents, and videos) and allow people to make comments in five different ways—using voice (with a microphone or telephone), text, audio file, or video (with a webcam)—and share them with anyone they wish.
• Many Eyes. A tool for the visual representation of data that makes sharing data creative and fun, while tuning students into the relation between information presentation and interpretation.
• Scratch. A designing tool with a language that makes it easy to create interactive stories, animations, games, music, and art.
Classroom Vignettes of Practices with Technologies and Literacy
Junior High “Intervention†Class
We have studied our reading/writing intervention class in a suburban community of the Twin Cities for 3 years (O’Brien, Beach, & Scharber, 2007). The class uses a Literacy Lab setting with a reduced enrollment target of 15 students, previously assessed as struggling in reading, and mentored by two
teachers, both of whom hold K–12 reading licenses. The class meets once a day in a block scheduling format, with 93-minute class periods. The curriculum juxtaposes traditional engagement activities with “new literacies†activities. For example, on the side of more traditional interventions, students use
the Scholastic READ 180 program, read and discuss young adult novels as a group, and dramatize the texts and a range of activities to integrate reading and writing. They also engage in strategies instruction, such as the use of mind mapping and various activities designed specifically to help students achieve competence on state language arts standards and high-stakes assessments. On the new literacies side, using various technology tools, the students engage in writing activities, such as producing stories, comic books (using Comic Life), wikis (in Moodle) and poetry writing. They write journal responses to their reading and construct PowerPoint presentations about topics, such as their favorite video games or young adult novels, and share their poetry or story writing. They plan, design, and perform radio plays (using GarageBand for background tracks and sound effects). Recently, students completed placebased projects in which they used VoiceThread to publish photos of important places in their school, complete with audio or print commentaries. They publish their writing in the school district Moodle site. Some of the students also participate in afterschool computer gaming sessions. In the new literacies realm, the teachers include practices in which students engage to explore ideas, construct a classroom community, and develop agency in meeting personally relevant goals.
Media Class Rhythm and Flow Unit
This was the first unit that Brock created after transitioning from a language arts teacher to a media specialist. He found that the units he taught as a language arts teacher were still very applicable to the standards and benchmarks in media technologies when it came to teaching media or print texts, or the many opportunities that arise as a result of having access to computers. As a media specialist, Brock tried to link the media and technology activities to improvement in reading and writing. For example, he included Reading Friday, in which students had to create a music business persona/image, describe their style of music, and choose lyrics that they would perform and record into Garage Band. GarageBand is one option. Students could also use one of the Web-based products we have discussed. So the students took print texts—poems, paragraphs, dialogue, and lyrics they liked—and recorded themselves reading as a track on the music software. They also recorded outtakes, or descriptions of the experiences, and rated their oral interpretation performances. After students had shared their tracks with Brock, they began to practice putting a beat and music behind the tracks. This enabled a thorough interpretation and exploration of voice and oral expression. Students who had never really thought about the qualities of the voices in the narratives (e.g., the tone, theme, pitch, volume, emphasis in elongation and breaks) could better hear and understand dramatic pauses, tone and volume changes, diction and word choices, as well as format, organization, and punctuation. This activity began to make a difference in students’ understanding of these concepts. As students began exploring pauses work, changing and emphasizing words, assonance, and resonance in rhyme structures, they were really looking at oral reading and fluency, and reading in general, in a much deeper and more playful way. Students then took photos and made their CD covers, using image manipulation software; they made their own liner notes and wrote their own copy for advertising; they conceptualized a MySpace design (because they were not permitted access to MySpace) and created tours, clothing, and so on. It turned into a game about being in the music business. This unit, which had originally been intended as a week-long reward for the kids, so engaged students as they performed their lyrics and created their music careers that Brock extended it for 2 weeks.
What are “best practices†in these scenarios? First, students engage in activities, using technologies that support both the local curriculum and state standards. Rather than considering technologies and innovation as replacements for more traditional instructional and learning, the technologies provide
more effective ways to engage students. Second, best practices dictate that the technologies enhance teaching and learning by providing access to media and enabling students to use various modalities to explore and publish ideas. Third, although we can already see a future in which digital literacies replace traditional print literacies, for now, given the realities of standards, print-centric assessments, and, particularly the predominately print-based curricula, best practices explore ways to bridge print and digital literacies effectively. Fourth, the notion of best practices, which we typically associate with teaching or facilitating learning, should be extended to include practices related to supporting infrastructures and increasing funding for technologies that do enhance teaching and learning.
Future Directions and Best Practices for Engaging Students in Literacy with Technology
Clearly, the future will bring a wider range of more accessible digital tools. What started as the Web 2.0 phenomenon will continue at a rapid rate as the analog television bandwidth is purchased by Web Portals, such as Google, to provide faster access to more and more data from small personal communication devices—things that we used to call “phones.†As shown by current studies from the Pew Internet and American Life project, youth will continue to use more media and engage in more media multitasking or multimediating. As more young people have access to these tools, the digital divide will persist but not be as defined. As educators, we will slowly but surely start to redefine learners based on the experiences these young people have daily in the mediasphere, and the way their brains are changing as result. Similarly, we will start to redefine literacy more in line with the new literacies practices in which youth engage outside of school, and to think of better ways to connect out-of- school and in-school experiences with technologies and literacy.
Given the frameworks briefly described in this chapter for understanding technology-enabled or enhanced texts and new literacies practices, what are some possible practices that will not only produce more engaged and better readers and writers, as traditionally defined, but also facilitate practices
that improve intertextual, intermedial, and multimodal understanding? We briefly outline some of these realizing that practices, they are morphing as we write, and that new ones will have emerged even before this chapter is published. We offer these not so much as static examples but as ways of thinking about best practices in the milieu of new and emerging technologies, and new literacies and literates. We want fellow educators to think in novel ways about how these new technologies may improve literacy practices, not because of their technical features, but because they are engaging. Although it is over simplistic to state that technologies are worthwhile simply because they are motivating, we might cautiously state that technologies are engaging because they often incorporate aspects of play, are pleasurable, and are associated with leisure time outside of school. We also argue that good technology can guide and extend students’ knowledge of the world and their relationship to it, and that the software and appliances it inhabits are means for guidance, creativity, and production. Here are some recommended practices as we to end this decade and head into the next.
Engaging Readers and Writers
Young people should have access to curricula and learning opportunities in which reading and writing strategies instruction is not always the focus; rather the focus is to provide high-interest engaging activities that allow young people to accomplish goals using a range literacy tools and practices, many of them enabled by technology. Young people can become very strategic about what tools they use and how they use them to engage in practices that produce personally relevant outcomes. Learners need to be strategic, but they do not always benefit most from being taught strategies. And, as we noted, it is quite possible that the learners we are trying to engage are harder to engage because of their experiences in the mediashpere. In Brock’s teaching, texts aren’t necessarily print texts; rather, they are multimodal messages (Dubbels, 2008). For example, Brock has even used allegorical paintings and text as movement activities and multimodal analogues to decoding and propositional levels of comprehension.
Connecting with Out-of-School Literacies
As educators, we should make a more concerted effort to connect school instructional practices and curricula to out-of-school practices. Literate practices involved in activities such as instant messaging, creating and reading images, authoring webpages, and participating in social networks are ignored, devalued, or even feared in schools. In contrast, students engagement in strategies instruction, skills instruction, and reading textbooks and answering questions is common. Although these traditional activities and assessments are important, and more directly tied to valued outcomes, such as performance on high-stakes tests, they are increasingly disconnected from the new literacies skills, knowledge, and abilities that youth use the most, and they are simply not as engaging as many of the digital literacies practiced outside of school. The digital tools, and the practices they support, some of
which we present shortly, are not intended to turn youth completely away from traditional academic reading and learning; rather, they are intended to engage them in novel ways with important content and learning tasks. The goal, as we noted, is to engage students in these practices, to improve their
learning, and to connect the learning to personally relevant goals.
Taking Advantage of Multimodality
Traditional print materials, such as textbooks, have changed little over the last 150 years, and they have performed admirably as the staple of the curriculum. But given the range of teaching and learning tools enabled by new and emerging technologies, print materials alone are increasingly inadequate, not
to mention uninteresting, to young people. Students are increasingly able to use a range of tools to compose and to understand complex ideas, to convey beliefs and emotions, and to share their creations in print, visual, aural, and even tactile and kinesthetic forms. The most straightforward practice to capitalize on the multimodality of digital texts is simply to make the tools available (e.g., computers, digital cams and audio recorders, multimedia authoring tools, Web authoring tools, Web 2.0 tools) and provide practice in using them. A more involved approach is to think systematically of multimodal
options for existing tasks and assignments (e.g., a media inquiry project in place of a report; a blog in place of a term paper), and to provide for students a choice in the modalities and tools they use. David and his colleagues did just this in the Literacy Lab at Jeff High School (O’Brien, 2006; O’Brien, Springs, & Stith, 2001) when they reconstructed an entire literacy curriculum to take advantage of a multimedia lab they set up.
Examining Stances toward Technology
Ideally, to construct digitally enabled curricula, youth need educators who are either capable of using the technologies or open to learning them (often with support of students!) and connecting the technology tools to literacy practices. Taking new stances requires new attitudes and familiarity with the frameworks we have briefly overviewed (e.g., frameworks in which texts are multimodal representations rather than just print, and reading and writing are socially and culturally embedded practices that can be enabled with digital tools). Prensky’s (2001) characterization of digital natives (the students) and digital immigrants (teachers who did not grow up with the technologies that students use adeptly) is a useful, albeit forced, binary that speaks to stance. Digital immigrants need to be willing to jump into the fray and start to use the technologies that their students know. The practical side of this
immersion is that teachers who use the technologies can understand how these tools enable teaching and learning; the more affective dimension is that the actualizing digital immigrants see the value of the tools and feel good about their own competence in using them.
Resources
Further Reading
Beach, R. (2006). Teachingmedialiteracy.com: A resource guide to links and activities. New
York: Teachers College Press. Available online at teachingmedialiteracy.com.
Burn, A., & Durran, J. (2007). Media literacy in schools: Practice, production and progres-
sion. London: Paul Chapman.
Coiro, J., Knobel, M., Lankshear, C., & Leu, D. J. (Eds.). (2008). The handbook of research
in new literacies. New York: Erlbaum.
Kist, W. (2005). New literacies in action: Teaching and learning in multiple media. New
York: Teachers College Press.
Websites
—Editlib. The EdITLib Digital
Library is a repository of peer-reviewed and published articles and papers on the
latest research, developments, and applications related to all aspects of educa-
tional technology and e-learning.
—The Assembly on Computers in English is a long-standing
assembly of the National Council of Teachers of English and is a nonprofit orga-
nization of English language arts teachers and teacher-educators dedicated to
intelligent technology integration into the English language arts.
—IRA Focus on Technology: IRA
Programs and Resources is a link to resources of the International Reading
Association site, designed to help educators support students in the new litera-
cies of information and communication technologies, as well as to help teachers
who want to become more proficient in using the technologies. The resources
include publications, online resources, and meetings and events that support
the use of technologies and literacy.
References
Alvermann, D. E., Moon, J. S., & Hagood, M. C. (1999). Popular culture in the classroom: Teaching and researching critical media literacy. Newark, DE: International Reading Association.
Beach, R., & O’Brien, D. G. (2008). Teaching popular culture texts in the classroom. In J. Coiro, M. Knobel, C. Lankshear, & D. Leu (Eds.), Handbook of research on new literacies (pp. 775–804). New York: Erlbaum.
Clark, A. (2003). Natural born cyborgs? In J. Brockman (Ed.), The new humanists (pp. 70–77). New York: Barnes & Noble.
Coiro, J., & Dobler, E. (2007). Exploring the online reading comprehension strategies used by sixth-grade skilled readers to search for and locate information on the Internet. Reading Research Quarterly, 42(2), 214–257.
Coiro, J., Knobel, M., Lankshear, C., & Leu, D. J. (Eds.). (2008). The handbook of research on new literacies. New York: Lawrence Erlbaum.
Cope, B., & Kalantzis, M. (Eds.). (2000). Multiliteracies: Literacy learning and the design of social futures. London: Routledge.
Dubbels, B. R. (2008). Video games, reading and transmedial comprehension. In R. E. Ferdig (Ed.), Handbook of research on effective electronic gaming in education (pp. 251–276). Hershey, PA: IGI Global.
Evans, E., & Po, J. (2007). A break in the transaction: Examining students’ responses to digital texts. Computers and Composition, 24, 56–73.
Foehr, U. G. (2006). Media multitasking among American youth: Prevalence, predictors, and pairings. Menlo Park, CA: Henry J. Kaiser Family Foundation.
Graesser, A. C., Millis, K. K., & Zwaam, R. A. (1997). Discourse comprehension. Annual Review of Psychology, 48, 163–189.
Hague, S. A., & Mason, G. E. (1986). Using the computer’s readability measure to teach students to revise their writing. Journal of Reading, 30(1), 14–17.
Hobbs, R. (2007). Reading the media: Media literacy and high school English. New York: Teachers College Press.
Jewitt, C., & Kress, G. (Eds.). (2003). Multimodal literacy. New York: Peter Lang.
Kamil, M. L. (1982). Technology and reading: A review of research and instruction. In J. A. Niles & L. Harris (Eds.), New inquiries in reading research and instruction. Thirty-first yearbook of the National Reading Conference (pp. 251–260). Rochester, NY: National Reading Conference.
Kamil, M. L., Intrator, S., & Kim, H. S. (2000). Effects of other technologies on literacy and literacy learning. In P. M. M. Kamil, P. D. Pearson, & R. Barr (Eds.),
Handbook of reading research (Vol. 3, pp. 773–788). Mahwah, NJ: Erlbaum.
Kist, W. (2005). New literacies in action: Teaching and learning in multiple media. New York: Teachers College Press.
Knobel, M., & Lankshear, C. (Eds.). (2007). A new literacies sampler. New York: Peter Lang.
Kress, G. (2003). Literacy in the new media age. London, UK: Routledge.
Kress, G., & Van Leeuwen, T. (2001). Multimodal discourse: The modes and media of contemporary communication. London: Edward Arnold.
Lankshear, C., & Knobel, M. (2003). New literacies: Changing knowledge and classroom learning. Buckingham, UK: Open University Press.
Leander, K. M. (2007). “You won’t be needing your laptops todayâ€: Wired bodies in the wireless classroom. In M. Knobel & C. Lankshear (Eds.), A new literacies sampler (pp. 25–48). New York: Peter Lang.
Lenhart, A., Madden, M., Macgill, A. R., & Smith, A. (2007). The use of social media— from blogging to online social networking to creation of all kinds of digital material—is central to many teenagers’ lives. Washington, DC: Pew Internet and American Life Project.
Leu, D. J. (2000). Literacy and technology: Deictic consequences for literacy education in an information age. In M. L. Kamil, P. Mosenthal, P. D. Pearson, & R.
Barr (Eds.), Handbook of reading research (Vol. III, pp. 743–788). Mahwah, NJ: Erlbaum.
McEneaney, J. E. (2006). Agent-based literacy theory. Reading Research Quarterly, 41(3), 352–371.
Miller, P. (2005). Web 2.0: Building the new library. Ariadne, 45.
New London Group. (1996). A pedagogy of multiliteracies: Designing social futures. Harvard Educational Review, 66(1), 60–92.
O’Brien, D., Beach, R., & Scharber, C. (2007). “Struggling†middle schoolers: Engagement and literate competence in a reading writing intervention class. Reading Psychology, 28(1), 51–73.
O’Brien, D., & Scharber, C. (2008). Digital literacies go to school: Potholes and possibilities. Journal of Adolescent & Adult Literacy, 52(1), 66–68.
O’Brien, D. G. (2006). “Struggling†adolescents’ engagement in multimediating: Countering the institutional construction of incompetence. In D. E. Alvermann,
K. A. Hinchman, D. W. Moore, S. F. Phelps, & D. R. Waff (Eds.), Reconceptualizing the literacies in adolescents’ lives (pp. 29–46). Mahwah, NJ: Erlbaum.
O’Brien, D. G., & Bauer, E. (2005). New literacies and the institution of old learning. Reading Research Quarterly, 40, 120–131.
O’Brien, D. G., Springs, R., & Stith, D. (2001). Engaging at-risk students: Literacy learning in a high school literacy lab. In E. B. Moje & D. G. O’Brien (Eds.), Constructions of literacy: Studies of teaching and learning in and out of secondary schools (pp. 105–123). Mahwah, NJ: Erlbaum.
Pearson, P. D. (2004). The reading wars. Educational Policy, 18(1), 216–252.
Prensky, M. (2001). Digital natives, digital immigrants. On the Horizon, 9(5). Accessed April 1, 2008, from www.marcprensky.com/writing/Prensky%20-%20digital%20 natives,%20digital%20immigrants%20-%20part1.pdf.
Reinking, D., McKenna, M., Labbo, L., & Kieffer, R. (Eds.). (1998). Handbook of literacy and technology: Transformations in a post-typographic world. Mahwah, NJ: Erlbaum.
Restak, R. (2003). The new brain: How the modern age is rewiring your mind. New York: Rodale.
Roberts, D. F., Foehr, U. G., & Rideout, V. J. (2005). Generation M: Media in the lives of 8–18 year-olds. Menlo Park, CA: Kaiser Family Foundation.
Vander Wal, T. (2007). Folksonomy Coinage and Definition. Retrieved October 26, 2007, from www.vanderwal.net/folksonomy.html.
Xiong, C., & Relerford, P. (2008, January 13). A minor walkout in Facebook flap. Minneapolis Star Tribune. Accessed October 24, 2008, at www.startribune.com/local/ west/13677002.html.
Why is learning and instruction so severe?
Why is it that we say ” there is no time for playing here . . . don’t , mess around”.
Should games and play be considered important in designing instructional contexts?
We do know that play is important in the early development of children, but we soon change from the natural learning state of the learner to the convenience of the instructor. This may have come about from a number of factors, but it is likely an issue of convenience for the instructor, not the instructed.
Games and play may offer a more fertile approach for designing instruction, where individuals can be put into a learning environment rich with choice and feedback . . . not only for gathering information about a student’s learning, but that also demand mastery, plenty of do-overs, and where the performance is the assessment (informative assessment — not assessment where the learner is sequestered from learning for the sake of testing in a non-learning situation!). Games and play, by their very nature, assess, measure, and evaluate — and good games and curriculum built upon the principals of play do it in a way that is a seamless and an integrated part of the story arc, and the assessments are the performance ( you do it, or you do it over . . . . and you should wanna do it).
The taxonomy (above) comes from Dubbels (2008), where observations in game play were coded from this model for research on reading comprehension and game play.
The model was developed by looking at games as a structured form of play, where learning was considered as one of the primary purposes of play, and that learning really is our natural state.
We are always learning; sometimes we are learning that we do not like what we are being asked to learn and become– Play is generally though of as intrinsically motivated behavior based upon interest and purpose, as opposed to most formal learning environments.
In this taxonomy, and perhaps it is more a framework than a taxonomy since not all parts need always be present; But each step represents a level of complexity and structure until elements of purposeless free-play has become a structured pursuit in rule-based environments where probability and hypothesis testing are “the play”.
This taxonomy is not all about video games. This taxonomy is an attempt to utilize research on play, as discussed in Play is how we learn.
- The first category: Visualization/ imagination seems primitive, but it can be very sophisticated. It may include driving an imaginary car, or even the basis for proposing a new theory for science much like Einsteins thought experiment about relativity and the speed of light. This can be very effective in getting commitment and motivation in learning and instruction. Use the words imagine and visulaize to start the activity. Games do this well, where we are asked to suspend disbelief and create a situatoin and scenario and our place in it.
- Roles / Identity where the individual may take on the role of a race car driver or a medical doctor. This may include what Williamson Shaeffer calls the epistemic frame, where the semiotic domains (Gee, 2001) identify the individual as part of a group who have an affinity for an activity. In this case the individual may wear a costume, use language, and tools that are particular to this community of practice, where individuals may gather to develop Self-Determination, i.e. skills, relationships, and autonomy.
- Rules are where play becomes more structured, game-like, and more directed, and allows for the semiotic domains to become crystallized as institutionalized discourse, and becomes cultural hegemony, where roles and rules become part of the value system and social hierarchy. An example of this might be, “I am the mommy and you are the baby, so you need to listen to me and do what I say”.
- Branching is where there are a number of possibilities based upon context and situation. Often games have different paths for play where there may be a number of different ways to start the game and move through the game– whether it be through the role of dice, scenarios, and spinners. Think of monopoly and chutes and ladders (snakes and ladders), where there are spaces that are moved through or across that create different situations for success or setbacks.
- Probability/ Estimation involves the likelihood that if this is done, this will happen. By nature, we are calculating and estimate possibility based upon our actions and the actions of others.In a computer game or a live action role play like Dungeons and Dragons, where characteristics may have a quantitative value in proportion to a discrete category, i.e. someone may have an Intelligence of 16 out of 20, and the player must role a 20 sided dice to see if their solution solves the problem they face in the problem/play space of the game–if they roll a 17, 18, 19, or 20, their solution fails. This demands the player to build situation models of the action and propose solutions based upon their understanding of the game space scenario and the possible solution paths based upon game character skills and resources. In a computer mediated game like Elder Scrolls Oblivion or Assassins Creed the computer processes likelihoods of success based upon skills accumulated (these are developed withe each in-game success.
Central for consideration here is that learning occurs in play, and play is very engaging and may provide a portal to sustaining activities and developing an approach to activities that are often classified as work. And for many, being told to work inspires resistance, reluctance, and avoidance tactics in mandatory performances and learning environments such as school, employment, and other conscriptive activities.
Play orientation, and play identities may offer a high interest and high motivation approach to learning that may have a greater probability in sustaining and improving practice, and thus play may act as a portal to engagement.
Games are a structured form of play (Dubbels, 2008), and play represents a portal to deeper learning, where play is an inquiry state and affective approach to activity. Brian Sutton-Smith, in the Ambiguity of Play described work and play as ethos that are dependent upon purpose and context–where an activity may be a play activity for some and arduous work for others–it depends upon personal attribution. The key factor seems to be the expectations of pleasure or dread associated with the activity, and tapping into play when designing learning environments may offer significantly greater likelihood for sustained engagement.
Taxonomy from:
Dubbels, B.R. (2008) Video games, reading, and transmedial comprehension. In R. E. Ferdig (Ed.),Reference. Information ScienceHandbook of research on effective electronic gaming in education.